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AFIT/GOR/ENS/07-01 

Abstract 

 
 The goal of any remote sensing system is to gather data about the geography it is 

imaging.  In order to gain knowledge of the earth’s landscape, post-processing algorithms 

are developed to extract information from the collected data.  The algorithms can be 

intended to classify the various ground covers in a scene, identify specific targets of 

interest, or detect anomalies in an image.  After the design of an algorithm comes the 

difficult task of testing and evaluating its performance.  Traditionally, algorithms are 

tested using sets of extensively ground truthed test images.  However, the lack of well 

characterized test data sets and the significant cost and time issues associated with 

assembling the data sets contribute to the limitations to this approach. 

 This thesis uses a synthetic image generation model in cooperation with a 

factorial designed experiment to create a family of images with which to rigorously test 

the performance of hyperspectral algorithms.  The factorial designed experimental 

approach allowed the joint effects of the sensor’s view angle, time of day, atmospheric 

visibility, and the size of the targets to be studied with respect to algorithm performance.  

A head-to-head performance comparison of the two tested spectral processing algorithms 

was also made. 
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IMPROVED HYPERSPECTRAL IMAGE TESTING USING SYNTHETIC IMAGERY 

AND FACTORIAL DESIGNED EXPERIMENTS 

 
 

I.  Introduction 
 
 

Background 
 

From the first manned hot air balloon flight in 1783, earth observation technology 

has advanced in a manner that allows us to gain more information about the world we 

live in.  Photographs taken from a balloon by Nadar in 1858 were the beginnings of the 

evolution of remote sensing (Schott, 1997).  Scientists in the 1950s and 1960s were 

motivated by the concurrence of digital computers, advancements in pattern recognition 

technology, and the launching of Sputnik to visualize how to observe the earth from 

space to acquire information to better manage its renewable and nonrenewable resources 

(Landgrebe, 2002: 17).  As a result, remote sensing has grown into what presently 

includes high-tech aerial and satellite based electro-optical sensors that provide us 

immense environmental, economical, commercial, and military value. 

Basically, information in remote sensing data is expressed by the spatial and 

spectral distribution of energy that is either reflected or emitted from earth and is then 

collected by an imaging system (Shaw and Manolakis, 2002: 13).  Spatial characteristics 

of an image relate directly to the size, shape, pattern, and geometry of objects within the 

image.  Spectral information refers to the electromagnetic distribution of light or thermal 

1 



energy.  It is the differences in the spectral signatures of materials that allow for the 

identification and discrimination of materials in a scene.  The emergence and utility of 

hyperspectral remote sensing systems take advantage of the fact that all materials reflect, 

absorb, and emit electromagnetic energy in distinct patterns related to their molecular 

composition (Manolakis and Shaw, 2002: 29). 

Just as our brain processes the information our eyes gather, post-processing 

algorithms extract information from the data collected by the electro-optical sensor.  

Post-processing algorithms include anomaly detectors, target detectors, classifiers, and 

unmixing algorithms.  After the design and implementation of an algorithm comes the 

often difficult task of testing and evaluating its performance.  Traditionally, algorithms 

have been tested using sets of extensively ground truthed test images.  There are several 

limitations to this approach.  The first is the availability of well characterized test data 

sets.  For example, what if a data set is not available that contains a specific target of 

interest?  Another restriction is the diversity in available data sets (DIRS, 2006: 11).  Is 

the algorithm robust if the performance can be verified on only a single scene type 

(forested, urban, etc.)?  Or under a single set of atmospheric conditions?  Or for a single 

time of day?  When a synthetic image generation model is being utilized, the user can 

create a large set of test images that feature variations such as scene type, time of day, 

and atmospheric conditions so that the algorithm can be assessed under more conditions. 

Methodology 
 

It has been established from a review of the literature, that algorithm developers 

only test their algorithms on a minimal number of images.  The reader may wonder how 
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an analyst can consider their algorithm to be robust if it is only tested on one or two 

images.  This leads to the main thrust behind this thesis study – an examination of how 

differing several in-scene parameters affects the performance of hyperspectral algorithms 

and the usefulness of the information derived from them.  This will allow us to better 

predict and understand the effectiveness of the post-processing algorithms under different 

in-scene parameters. 

In brief, the basic approach that will be followed in this research is to begin with a 

synthetic hyperspectral image created with the Digital Imaging and Remote Sensing 

Image Generation model, or DIRSIG.  The advantage to using synthetically created 

images is that the user is supplied with per-pixel ground truth which allows the algorithm 

performance to be evaluated at every pixel rather than at a few selected ground truthed 

sites.  Then, using a factorial designed experimental approach, the original image will be 

changed according to the specified experimental factors.  For this research, the factors of 

interest are the sensor view angle, the time of day, the amount of atmospheric visibility, 

and the size of the targets in the image.  Varying these factors from their low level to 

their high level will result in 24 = 16 hyperspectral images.  These images will then be 

subjected to two hyperspectral anomaly detection algorithms, the RX Method and the 

BACON Method.   

A second experimental design will be implemented when utilizing each anomaly 

detector.  For example, varying the number of principal components retained and the size 

of the processing window in the RX Method will give a better understanding of how the 

algorithm’s settings influence its performance on each synthetic image.  Separate 
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analyses of each algorithm will then be accomplished in order to determine which main 

effects and interactions have the greatest affect on algorithm performance. 

One common measure of performance for anomaly detectors is the utilization of 

true positive fractions and false positive fractions in the form of an operator characteristic 

(OC) curve.  However, large false positive fractions are not appealing since they imply 

that many background pixels are being declared as outliers.  Therefore, the OC curves in 

this thesis will only show the region of false positive fractions from 0 to 0.05.  For each 

image-detector combination, the responses for the designed experiments will be the true 

positive fraction when the false positive fraction is fixed at 0.01.  This will provide a 

measure of how the performance of each algorithm is affected by concurrently varying 

in-scene image parameters and anomaly detector parameters.  This approach will also 

provide a performance comparison of the two algorithms.  Since a factorial designed 

experimental approach will be adopted for altering the levels of the in-scene and 

algorithm parameters, we will also be able to observe how the joint effects of the 

parameters affect algorithm performance. 

Preview 
 

Chapter 2 contains a wealth of information providing background to this research.  

In this chapter, the hyperspectral anomaly detection algorithms that will be tested and the 

metrics employed will be discussed.  Additionally, a more detailed look at how a factorial 

designed experiment is essential to appropriately study and analyze each of the in-scene 

parameters and their interaction on algorithm performance is illustrated.  Chapter 3 

outlines the approach and experimental design of this thesis.  In Chapter 4, the results of 
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the experiments are presented with an in-depth discussion of their analysis.  Chapter 5 

provides a synopsis of the work completed in this thesis study and makes 

recommendations towards future work that is needed in the field of algorithm 

performance comparison and testing. 

 

5 



II.  Literature Review 
 
 
 Before jumping right into the methodology and subsequent results of this thesis, it 

is first important to highlight some of the main concepts used in the research.  First, a 

thorough look into the field of hyperspectral imaging will be carried out.  Following that, 

the advantages and disadvantages of using synthetic imagery will be discussed.  Also, 

this literature review will discuss the two hyperspectral anomaly detector algorithms that 

will be tested – the RX and BACON methods.  After that, operating characteristic (OC) 

curves, as well as the useful information that can be derived from them will be discussed.  

Finally, we will investigate the advantages experimental designs provide in determining 

the variables that are the most influential on a given experimental response. 

Hyperspectral Imaging 
 
 Electro-optical remote sensing utilizes the fact that the numerous objects in a 

scene are made up of materials that reflect, absorb, and emit electromagnetic radiation in 

ways attributable to their molecular composition and shape.   The field of spectroscopy 

measures, analyzes, and interprets this radiation that arrives back at a sensor (Shaw and 

Manolakis, 2002: 12).  If this radiation is measured over a band of contiguous 

wavelengths, the resulting spectral signature can be used to uniquely characterize and 

identify any given material. 

Shaw and Burke briefly describe the four sampling operations involved in the 

collection of hyperspectral image data.  They include, spatial sampling, spectral 

sampling, radiometric sampling, and temporal sampling.  The spatial sampling resolution 
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of the sensor is equal to the ground sample distance (GSD).  The GSD is equivalent to the 

area on the ground represented in one pixel of the spectral image.  For example, if the 

GSD is 1 meter, then each pixel in the image represents a 1 meter by 1 meter square on 

the ground.  In general, the GSD varies from a fraction of a meter to tens of meters.  The 

GSD is primarily established by the sensor aperture and the altitude of the airborne 

platform.  Spectral sampling is accomplished by decomposing the radiance received by 

the sensor in each spatial pixel into a number of wavebands.  A prism and interferometer 

are two means of spectral sampling.  An analog-to-digital (A/D) converter samples the 

radiance measured in each spectral channel and produces digital data at a recommended 

radiometric resolution (Shaw and Burke, 2003: 6). 

 Finally, temporal sampling refers to the process of collecting multiple spectral 

images on the same scene separated in time.  In other words, temporal sampling is using 

an airborne sensor to collect data over the same geographic area in the span of hours, 

days, weeks, or even months (Shaw and Burke, 2003: 8).  This is especially important for 

studying natural changes in a scene.  We see that seasonal variations present great 

changes in the spectral character of a scene.  A forest, for example, changes dramatically 

from one season to the next. 

Hyperspectral sensors have been developed to sample the reflective portion of the 

electromagnetic spectrum that extends from the visible region (0.4-0.7 μm) through the 

near-infrared (about 2.4 μm) in hundreds of adjacent bands.  The high spectral resolution 

feature of hyperspectral sensors preserves significant aspects of the spectrum.  It is this 

fact that makes the differentiation of materials on the ground possible.  Figure 1 

illustrates how the spatial and spectral information is formed to make a data cube (Shaw 
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and Manolakis, 2002: 13).  In general, it is the distinguishing features from the pixel 

spectra that provide the principal device for detecting and classifying materials in a scene. 

 
 

 
Figure 1.  Hyperspectral Data Cube (Shaw and Manolakis, 2003: 13) 

 
 

There are many environmental and sensor-related phenomena that can complicate 

the recovery of the reflectance spectra.  Sensor resolution, atmospheric effects, spectral 

variability of a scene’s surface materials, and other environmental and sensor effects are 

some of these issues.  As a result, there are many issues that must be addressed when 

designing, implementing, and analyzing a spectral imaging sensor (Shaw and Burke, 

2003: 8).  The spatial resolution of the sensor and atmospheric absorption and scattering 

are the two most significant contributors to diminished image quality. 

  A sensor’s spatial and spectral resolutions are matters that must be dealt with 

when designing a sensor.  The cost of a sensor is highly dependent on the size of aperture 

being used.  A smaller aperture reduces the cost of the sensor, but results in a degraded 
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spatial resolution, or a larger ground sample distance (GSD).  In terms of the “goodness” 

of a spectral imager, the best detection performance is expected when the angular 

resolution of the sensor, which is specified in GSD, is proportionate with the size of the 

targets in the image (Shaw and Burke, 2003: 8).  However, since targets vary in size, 

some targets may be fully resolved spatially while others may only fill a fraction of the 

GSD footprint.  This leads to designing detection algorithms to perform well for both full 

pixel and sub-pixel targets. 

 Atmospheric absorption and scattering are also significant contributors to a 

diminished image quality.  First, the atmosphere alters the spectrum of the solar 

illumination before it even reaches the ground.  This must be known in order to separate 

the impinging solar radiance from the reflectance spectrum that characterizes the material 

of interest.  Atmospheric gases, aerosols, and water vapor contribute greatly to the overall 

atmospheric transmission.  Second, the atmosphere scatters some of the solar radiation 

into the field of view of the sensor without ever having reached the ground.  This 

scattered light effects the reflected light traveling from the ground to the sensor and is 

called path radiance.  Third, the solar radiation scattered by the atmosphere acts as 

another source of diffused colored illumination.  Finally, the solar illumination that does 

reach the scene and is reflected back by the target of interest is further absorbed and 

scattered by the atmosphere on its way to the sensor (Shaw and Burke, 2003: 8-9). 

 A third concern when dealing with designing, implementing, and analyzing a 

spectral imaging sensor is spectral variability.  The term “spectral signature” implies that 

there exists a unique association between a material and its reflectance spectrum.  

However, it has been observed in both laboratory and field data that there is some 
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variability in the spectrum of most materials.  This may be due to unaccounted errors in 

the sensor, unaccounted atmospheric or environmental effects, material variation due to 

aging, and adjacency effects in which reflections from nearby objects alter the 

illumination of the material of interest (Shaw and Burke, 2003: 10).  As stated earlier, we 

also see that seasonal variations present great changes in the spectral character of a scene.  

Figure 2 is an example of variability in reflectance spectra measured over multiple 

instances of vehicle paint in a scene.  One can notice that the shapes of the spectra are 

fairly consistent, but the amplitudes vary greatly within the scene. 

 
 

 
Figure 2.  Example of Spectral Variability (Shaw and Burke, 2003: 10) 

 
 
 

There also exist many other environmental and sensor effects that can make the 

recovery of the reflectance spectra difficult.  In addition to absorption and scattering, 

several other environmental phenomena influence spectral imaging.  The amount of light 

reflected into the sensor field of view is affected by the sun angle relative to zenith, the 

sensor viewing angle, and the target’s surface orientation.  Clouds and ground cover, such 

as trees, may change the illumination of a material by casting shadows on targets.  Also, 
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nearby objects may reflect or scatter sunlight onto the target and thus change the overall 

illumination of the target.  Figure 3 illustrates some of the many atmospheric and scene-

related factors that can contribute to degradations in the imaging process. 

 As mentioned, spectral imaging sensors take advantage of the forward linear 

motion of the sensor platform to scan a scene.  Any nonlinear motion of the sensor 

though, can also degrade the spectral image by mixing spectral returns from different 

parts of the image.  In addition, the motion of targets in the scene can create artifacts in 

images.  Also, the actual operation of the sensor may create artifacts and noise in the data 

(Shaw and Burke, 2003: 8-10). 

 
 

 
Figure 3.  Contributors to Image Degradation (Shaw and Manolakis, 2002: 14) 

 
 
 

Synthetic Imagery 
 

Synthetic image generation (SIG) models are powerful tools used for the study of 

the image chain (Schott, 1997: 363).  Rochester Institute of Technology’s Digital Image 
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and Remote Sensing laboratory has developed the Digital Imaging and Remote Sensing 

Image Generation model, or DIRSIG, to assist the remote sensing community in several 

different application areas.   

Along with instrument prototyping and algorithm training, DIRSIG can be 

utilized to help in the testing of algorithms.  After the design and implementation of an 

algorithm comes the often difficult task of testing and evaluating the performance of the 

algorithm.  Traditionally, algorithms have been tested using sets of extensively ground 

truthed test images.  There are several limitations to this approach.  The first is the 

availability of well characterized test data sets.  For example, what if a data set is not 

available that contains a specific target of interest?  Another restriction is the diversity in 

available data sets (DIRS, 2006: 11).  Is the algorithm robust if the performance can be 

verified on only a single scene type (forested, urban, etc.)?  Or under a single set of 

atmospheric conditions?  Or for a single time of day?  When a synthetic image generation 

model is being utilized, the user can create a large set of test images that feature 

variations such as scene type, time of day, and atmospheric conditions so that the 

algorithm can be assessed under more conditions.   

SIG models look to effectively model nature and generate synthetic images that 

mimic real imagery.  One of the many groups interested in SIG models are algorithm 

developers (Schott, 1997: 364).  The interest is in developing and testing algorithms on 

scenes that contain a target of interest in a variety of forms and over a range of 

acquisition conditions.  The lack of real well ground truthed imagery motivates this 

interest. 
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To date, efforts have focused on using synthetic images and the corresponding 

truth to support the tuning and testing of algorithms.  Many complex hyperspectral 

algorithms have several modifiable parameters, such as weights and thresholds, which 

can be adjusted to improve performance.  However, when working with real data, it is 

difficult to know whether an adjustment is having the desired impact (Schott, 2000: 23).  

An example of this may be if, after making a change to a parameter, two possible targets 

become more detectable while another target becomes less detectable.  Has the algorithm 

improved?  When using SIG models, the user knows exactly what is in an image and can 

then tell quantitatively what is in each pixel and where the errors are being made. 

The use of synthetic data sets provides the user with many advantages.  The 

primary reason for the use of synthetic imagery in image chain analysis is that all of the 

details of the constructed image are known.  These details include the geometry of the 

scene and the spatial relationships of objects in the scene.  SIGs supply the user with per-

pixel ground truth which allows the algorithm performance to be evaluated at every pixel 

rather than at a few selected ground truthed sites.  Also, the cost and time savings of 

producing synthetic data over extensive field collection campaigns is significant (DIRS, 

2006: 11). 

The DIRSIG image used as the base model for this thesis is the Western Rainbow 

scene.  It is relatively homogeneous in the sense that the majority of the image is either 

normal vegetation or a mixture of grass and dirt.  There are, however, several deciduous 

trees and bushes, as well as roughly 30 military targets (tanks, missile carriers, and 

trucks), scattered throughout the image.  The image is 250 by 250 pixels in size with a 

ground sample distance of approximately 2 meters.  A framing array sensor with an 
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AVIRIS spectral range of 0.4 to 2.5 μm was utilized at an altitude of 15,000 feet.  The 

DIRSIG Western Rainbow image shown in Figure 4 was used in this thesis. 

 
 

 
Figure 4.  DIRSIG Western Rainbow Scene 

 
 
 

The state-of-the-art image generation models are a very powerful tool in helping 

to visualize the image chain.  However, with all of its benefits, it should not be perceived 

as a substitution to real imagery.  Mirroring all aspects of the real world is an impossible 

task.  The SIG models should be treated as tools that approximate the process, but not 

fully represent it.  Synthetic image generation models can aid in designing, analyzing, 

and sometimes reducing the extent of field studies, but it cannot replace them. 

Anomaly Detection Algorithms 
 
 Shaw and Manolakis describe detection as “the process of identifying the 

existence or occurrence of a condition.”  In the sense of anomaly detection, the problem 

becomes the existence or non-existence of a target in a given image pixel.  Usually, the 

output of an anomaly detection algorithm is an OC curve signifying the true positive and 
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false positive fractions for the detector.  A true positive refers to an outlier pixel being 

correctly classified as an outlier.  A false positive refers to a pixel being incorrectly 

identified as an outlier pixel.  The following paragraphs outline the two hyperspectral 

anomaly detection algorithms that will be used in this thesis.  The detectors are the RX 

Method and the BACON Method. 

RX Method 
 
 The RX Method employed in this thesis is a local anomaly detector developed by 

Reed and Yu.  It is a local detector in the sense that it passes a user-defined processing 

window over every pixel in an image to find anomalies.  The pixels enclosed inside the 

processing window are used to characterize the local background.  The pixel at the center 

of the processing window, x, is then tested relative to the background to establish if it is 

anomalous.  A test statistic is computed for each pixel using the following equation: 
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where, 

 μ̂  = the mean vector of the processing window 

 C = the covariance matrix of the processing window 

 N = the number of pixels in the processing window. 

Thus, to determine if x is an anomalous pixel in the image, RX(x) can be compared to an 

appropriate quantile of the χ2 distribution with p degrees of freedom, where p is the 

dimensionality of the data (Smetek and Bauer, 2006: 2). 
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BACON Method 
 

The Blocked Adaptive Computationally Efficient Outlier Nominators (BACON) 

Method employed in this thesis was developed by Billor, Hadi, and Velleman.  The 

algorithm for multivariate data begins by identifying an initial basic subset of m > p 

observations that can safely be assumed free of outliers, where p is the dimension of the 

data and m is an integer chosen by the user.  Discrepancies are then computed for each 

observation using the equation: 

)()(),( 1
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T
bibbi xxCxxCxd −−= − , i = 1, 2,…, n, 

where, 

bx = the mean vector of the observations in the basic subset b 

 Cb = the covariance matrix of the observations in the basic subset b. 
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The algorithm iterates until the size of the basic subset no longer changes.  The 

observations excluded from the final basic subset are nominated as outliers (Billor, Hadi, 

and Velleman, 2000: 286). 
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OC Curves 
 
 Results for anomaly detection algorithms can be summarized using operator 

characteristic (OC) curves.  The OC curve describes the relationship between the 

probability of a true detection and the probability of a false alarm.  A true detection, also 

known as a true positive, is a correct detection of a target in a pixel.  A false alarm, or 

false positive, is when the algorithm claims that a target is present in a pixel, when in 

fact, there is not one.  Spectral complexity of an image, the similarity of the target to the 

background, and the size of the target are some of the parameters that affect the 

performance of anomaly detection algorithms.  The ideal algorithm would approach a 

100% detection rate and a 0% false alarm rate.  Figure 5 contrasts OC curves for the 

performance of the RX Method on Synthetic Image 3 as the size of the processing 

window changes along with the number of principal components retained for data 

reduction. 
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Figure 5.  OC Curves for RX Method on Synthetic Image 3 
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 To create an OC curve, the user must have access to the truth data that defines 

where the targets are in the imagery.  For real imagery, the truth maps are constructed 

using extensive field collected ground truth measurements which are then mapped to the 

pixels in the scene.  Due to the natural uncertainty of the target location, the detection 

algorithm can only be performed on a per-target basis.  As was stated earlier, the use of 

synthetic image generators provides a per-pixel ground truth.  Therefore, the location of 

every target in the image is known with 100% certainty and a pixel-based OC curve can 

be generated (Ientillucci and Brown, 2003:119-120). 

Experimental Design 
 
 It has been recognized that in-scene parameters, such as the sensor view angle, the 

time of day, the atmospheric conditions, and the size of the targets hinder the ability of 

hyperspectral anomaly detection algorithms to find anomalies in a hyperspectral image.  

It has also been established from a review of the literature, that algorithm developers only 

test their algorithms on a minimal number of images.  For the robustness of an algorithm 

to be determined, the algorithm should be tested against several images with varying 

factors.  A factorial designed experiment is essential to appropriately study and analyze 

each of these in-scene parameters and their interaction on algorithm performance.  

Montgomery, as well as Wackerly, Mendenhall, and Scheaffer, fully detail the designing 

of experiments in their respective texts.  For purposes of this thesis, a simplified 

explanation of factorial designed experiments in presented in the following paragraphs. 

In experiments concerning several factors where it is essential to study the joint 

effect of the factors on a response, experimentalists turn to factorial designs because of 
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their efficiency.  A factorial design is one in which a complete replication of the 

experiment contains all possible combinations of the levels of the investigated factors 

(Montgomery, 2005: 160).  In a two factor experiment for example, if factor A has a 

levels and factor B has b levels, the experiment would consist of ab treatment 

combinations, or experimental runs.  In general, an Lk factorial design is one in which we 

have an experiment with L levels of k factors.  The advantage of using factorial designs 

can be easily demonstrated. 

For the purposes of illustrating a factorial design, we will use a simple experiment 

involving three factors A, B, and C, each with two levels.  We call these levels “low” and 

“high” and denote them “-“ and “+,” respectively.  These levels may be quantitative, 

qualitative, or even the presence or absence of a factor.  An experimental design such as 

this is known as the 23 factorial design.  Thus, we will have a total of 23 = 8 experimental 

runs.  The eight runs are shown geometrically in Figure 6. 

The eight treatment combinations can also be represented by lowercase letters, 

also shown in Figure 6.  We can see from the figure that in a treatment combination, a 

lowercase letter represents the high level of that particular factor.  The absence of a 

certain letter in that treatment corresponds to that factor at its low level.  For example, the 

treatment combination ac denotes factors A and C at their high levels and factor B at its 

low level.  The notation (1) depicts all factors at their low levels (Montgomery, 2005: 

211-212).  Table 1 lists the eight experimental runs of the 23 design in a design matrix. 
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Figure 6.  Geometric View of the 23 Factorial Design 

 
 
 

Table 1.  The 23 Factorial Design Matrix 

Trial Treatment 
Combination Factor A Factor B Factor C 

1 (1) - - - 
2 a + - - 
3 b - + - 
4 ab + + - 
5 c - - + 
6 ac + - + 
7 bc - + + 
8 abc + + + 

 
 
 

At this point, the experimental runs are ready to be conducted in a random order.  

Once the runs have been completed and the data have been collected, a statistical analysis 

of the data is necessary.  Most of the time, this involves statistical procedures included in 

the analysis of variance, or ANOVA.  The ANOVA procedure attempts to analyze the 

variation in a set of responses and assigns portions of this variation to the main effects, 

interaction terms, and experimental error of the design.  The objective of ANOVA is to 
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locate the important factors and interactions and determine how they affect the response 

(Wackerly 2002). 

In general, the variability of a set of n measurements is proportional to the sum of 

squares of deviations, 2

1
(

n

i
i

)y y
=

−∑ , where yi is an experimental observation or response 

and y is the overall mean of the observations.  This quantity is then divided by n – 1 in 

order to calculate the sample variance.  As before, ANOVA partitions this sum of squares 

of deviations, or the Total Sum of Squares (SST), into parts attributed by each of the main 

effects and interaction effects, plus a remainder associated with random experimental 

error (Wackerly, 2002: 629-630). 

In order to determine the Sum of Squares for the ANOVA, we must estimate the 

main and interaction effects using contrasts.  A contrast is also called the total effect of a 

factor or interaction of factors.  The contrast for each main factor and interaction effect 

can be found in Table 2.  For the 23 design, the Sum of Squares for each factor and 

interaction is then found by dividing each contrast by 23n = 8n (Montgomery, 2005: 215).  

The Sum of Squares for Error (SSE) can be determined by subtraction, since the Total 

Sum of Squares is partitioned as SST = SSA + SSB + SSC + SSAB + SSAC + SSBC + SSABC 

+ SSE. 

The 23 design in n replications contains 23n - 1 degrees of freedom between the 

eight treatment combinations.  The main effects A, B, and C and the interaction effects 

AB, AC, BC, and ABC are each associated with one degree of freedom.  The remaining 

23(n – 1) degrees of freedom are associated with the experimental error. 

 

21 



Table 2.  Contrasts for Main Effects and Interaction Effects 

Factor or Interaction Contrast
A a + ab + ac + abc – [(1) + b + c + bc] 
B b + ab + bc + abc – [(1) + a + c + ac] 
C c + ac + bc + abc – [(1) + a + b + ab] 

AB ab + abc + c + (1) – [a + b + ac + bc] 
AC ac + abc + b + (1) – [a + c + ab + bc] 
BC bc + abc + a + (1) – [b + c + ab + ac] 

ABC a + b + c + abc – [(1) + ab + ac + bc] 
 
 
 
 Given that the Sum of Squares and the degrees of freedom for each main effect 

and interaction effect have been computed, the ANOVA table can now be completed.  

The ANOVA table for n replicates of the 23 design is shown in Table 3.  The calculated 

ANOVA values allow the experimenter to test the observed results of each factor for 

statistical significance by means of an “F-test”.  That is, the experimenter can see which 

factors and interactions make a significant impact on the response variable of the 

experiment based on the magnitude and statistical hypothesis testing of F0.  The null 

hypothesis being tested is that a given factor or interaction between factors is not 

significant in the design.  The alternative hypothesis is that the given factor or interaction 

between the factors is significant in the design.  To test these hypotheses, F0 is compared 

to an F test statistic with a specified degree of significance, α.  Therefore, 0 ,1,8(nF Fα 1)−<  

implies that the factor of interest is not significant in the design.  On the other hand, if 

, the experimenter concludes that the factor of interest is significant. 0 ,1,8(nF Fα −> 1)
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Table 3.  The ANOVA Table for the 23 Factorial Design in n Replications 

Source of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom Mean Square F0

Factor A SSA 1 MSA = SSA 0
A

E

MSF
MS

=  

Factor B  SSBB 1 MSB = SSB BB 0
B

E

MSF
MS

=  

Factor C  SSC 1 MSC = SSC 0
B

E

MSF
MS

=  

AB Interaction SSAB 1 MSAB = SSAB 0
AB

E

MSF
MS

=  

AC Interaction SSAC 1 MSAC = SSAC 0
AB

E

MSF
MS

=  

BC Interaction SSBC 1 MSBC = SSBC 0
AB

E

MSF
MS

=  

ABC Interaction SSABC 1 MSABC = SSABC 0
AB

E

MSF
MS

=  

Error SSE 8(n - 1) 8( 1)
E

E
SSMS
n

=
−

  

Total SST 8n - 1   

 
 
 

On occasion, available resources will only allow a single replicate of the design to 

be run.  The risk in performing an experiment with only one run at each test combination 

is that, if the response is highly variable, then misleading conclusions may result.  This 

results in fitting the model to noise.  The reader can also see from Table 3 that only one 

replication of the design (n = 1) leads to zero degrees of freedom for error.  Thus, there is 

no internal estimate for error.  However, Montgomery appeals to the sparsity of effects 

principle.  That is to say, most systems are dominated by some of the main effects and 

low-order interactions.  The higher order interactions can be deemed negligible.  

Therefore, the negligible effects can be pooled as an estimate of error (Montgomery, 

2005: 211-224). 
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 The primary advantage of the experimental design approach is that it allows an 

examination of both the main factors and their interactions with respect to a response 

variable.  Clearly, implementing a factorial designed experiment will help achieve the 

main objective of this thesis.  The experimental approach will permit a thorough 

examination of the accuracy and effectiveness of hyperspectral target detection 

algorithms under differing in-scene factors.  Also, it will allow us to observe the joint 

effects of these in-scene parameters with respect to algorithm performance. 
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III.  Methodology 
 
 

Overview of the Approach 
 

Before exploring the approach and algorithms used in this thesis study, it is 

important to first review our main objective.  The primary goal of this thesis is to 

examine the accuracy and effectiveness of hyperspectral anomaly detection algorithms 

under different values of sensor view angle, presence of shadows in the image, the 

amount of haze in the atmosphere, and the size of the targets in the scene.  This will 

involve the use of synthetic hyperspectral images created by DIRSIG and two 

hyperspectral anomaly detector algorithms.  The algorithms that will be used and tested 

are the RX method and the BACON method.  Chapter 2 discusses these algorithms 

significantly.   

Chapter 2 also details the algorithm evaluation metric that will be used in this 

thesis.  The true positive fraction and the false positive fractions of each detector will be 

utilized to create an OC curve for each image-detector combination.  These rates can be 

determined since synthetic imagery provides per-pixel ground truth and evaluation at 

every pixel in the scene is made possible.  The true positive fraction when the false 

positive fraction is fixed at 0.01 will then be the response in the factorial experiments.  

Factorial designed experiments give us the ability to simultaneously analyze the main and 

joint effects of the in-scene parameters with respect to hyperspectral algorithm 

performance.  The basic approach of this thesis can be best represented schematically as 

the flowchart in Figure 7. 
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Figure 7.  Flowchart of Thesis Study Approach 

 
 
 
 As seen in Figure 7, we begin with the DIRSIG Western Rainbow scene described 

in Chapter 2.  This synthetic hyperspectral image is characterized by a framing array 

hyperspectral sensor positioned directly over the center of the scene at noon in the middle 
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of June.  The targets are full scale and there is 23 km of atmospheric visibility.  Ground 

truth is available for each pixel in the synthetic image.  A 24 full factorial designed 

experiment will then be run to create the remaining 15 experimental synthetic images at 

the specified levels of all factors.  These images, along with the initial synthetic image we 

began with, now become the 16 design points of our experiment. 

 From here, each design point will be run through the two hyperspectral anomaly 

detectors to acquire the experimental responses.  To get these responses though, we will 

employ another factorial designed experiment for each detector.  This time, a factorial 

experiment will be conducted on each anomaly detector with two algorithm-specific 

parameters being varied at two levels.  This experiment will allow us to determine 

optimal settings to maximize each algorithm’s performance.  The result of this 

experiment will be an OC curve for each image-detector-parameter permutation.  The 

false positive fraction will then be fixed at 0.01 and the corresponding true positive 

fractions will be calculated and become the responses of each experiment. 

Analysis of these results can be achieved by employing statistical techniques such 

as ANOVA and plotting the results to establish trends visually.  The analysis will reveal 

the degree of significance that the main effects and interactions of the sensor view angle, 

presence of shadows in the image, the atmospheric visibility, and the size of the targets in 

the scene have on anomaly detector performance.  It is from these results and the 

corresponding analysis that we will also be able to determine the optimal parameter 

settings for each algorithm.  Even more, using a nested factorial design, we will be able 

to determine if the algorithm used is a significant factor and which, if any, algorithm 

performed the best under the given levels of our experimental factors. 

27 



Experimental Factors and Factor Levels for Creating Synthetic Images 
 

As stated previously, the intention of this thesis is to examine the accuracy and 

effectiveness of hyperspectral anomaly detection algorithms under different values of 

sensor view angle, shadows, atmospheric visibility, and the size of the targets in the 

scene.  These are four factors that are believed to affect the performance of anomaly 

detectors. 

Sensor View Angle 
 

By varying the viewing angle of the hyperspectral sensor, more of the geometry 

and terrain of the actual image comes into play.  Hills and valleys in the terrain that, 

when viewed from directly overhead are not as prominent in the image, now stand out 

and influence the path of the reflected or emitted electromagnetic energy back to the 

sensor.   

Table 4 shows the low and high factorial levels of sensor view angle for the 

purpose of this thesis.  A 0° degree view angle corresponds to the framing array sensor 

being positioned directly over the center of the image looking straight down.  Figure 8 

shows the graphical depiction of 0°, 20°, and 40° sensor view angles.  When varying the 

view angle of the sensor, the distance from the sensor to the center of the image was held 

at a constant 15,000 feet.  This allows the sensor to “look through” the same distance of 

atmosphere for each view angle setting.  As a result, the altitude of the sensor varies with 

the view angle. 
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Table 4.  Factor Levels for Sensor View Angle 

Factor Level Sensor View Angle 
Low (-1) 0° 
High (1) 40° 

 
 
 

15,000 ft altitude

0°

40°

20°

 

Figure 8.  Graphical Depiction of Factor Levels for Sensor View Angle 
 
 
 

Presence of Shadows in the Scene 
 

The presence of shadows in a scene is one of the many environmental effects that 

can make the recovery of the reflectance spectra difficult.  Clouds and ground cover, such 

as trees, may change the illumination of a material by casting shadows on targets.  Also, 

nearby objects may reflect or scatter sunlight onto the target and thus change the overall 

illumination of the target.  Shadows also influence the spectral variability of a material in 

a scene.  Figure 3 illustrates how shadows and other unknown atmospheric and scene-

related factors can contribute to degradations in the imaging process by having an effect 

on the spectral variability of a material. 
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Since the location of the sun determines where and how much shading appears in 

a scene, the controllable factor that will be used to vary the amount of shadows in a scene 

is the time of day.  Obviously, there are more shadows cast during the morning and 

evening hours than in the middle of the afternoon.  The simulation time in DIRSIG will 

be set to 15 June 2005 in order to replicate a day in which the sun is approximately 

directly overhead at noon time.  Thus, to simulate a minimum level of shadows in the 

scene, the low level for time of day will be 1200.  Alternatively, the time of day will be 

set to 1800 to simulate a high level of shadows in the scene.  Table 5 shows the low and 

high factorial levels for the experimental factor Time of Day.  

 

Table 5.  Factor Levels for Time of Day 

Factor Level Time of Day 
Low (-1) 1200 
High (1) 1800 

 
 
 

Atmospheric Haze Levels 
 

Haze in the atmosphere is another environmental effect that can make detecting 

and identifying targets in a hyperspectral image difficult.  Atmospheric gases, aerosols, 

and water vapor contribute greatly to the overall atmospheric transmission.  Gases and 

particles in the atmosphere alter the spectrum of the solar illumination before it even 

reaches the ground.  Also, the solar illumination that does reach the scene and is reflected 

back by the target of interest is further absorbed and scattered by the atmosphere on its 

way to the sensor.  In DIRSIG, the user can regulate the atmospheric visibility in a scene.  

The low and high factor levels for atmospheric visibility are listed in Table 6. 
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Table 6.  Factor Levels for Atmospheric Haze 

Factor Level Atmospheric Haze 
Low (-1) 5 km visibility 
High (1) 23 km visibility 

 
 

Size of Targets in a Scene 
 

The size of the targets in the scene will be varied from full scale targets down to 

half scale targets.  A typical full scale target in the DIRSIG Western Rainbow scene is 

contained in roughly 15-16 pixels.  When scaled by half, that same target is contained in 

about 4-5 pixels.  Figure 9 compares several full scale targets (A and C) from Synthetic 

Image 1 to those same targets at half scale (B and D) from Synthetic Image 2.  The 

figures are subsets of the DIRSIG generated truth images. 

 
 

 
A 

 
B 

 
C D 

Figure 9.  Comparison of Full Scale and Half Scale Targets 
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The size of the targets was chosen as a controllable factor because it is known that 

certain anomaly or target detection algorithms perform poorly with large in-scene targets.  

The RX Method for instance, does not perform well if a target is large relative to the size 

of the image processing window.  The low and high factor levels for target size are 

shown in Table 7. 

 
 

Table 7.  Factor Levels for Size of Targets 

Factor Level Scale of Targets 
Low (-1) 1/2 
High (1) 1 

 
 
 

24 Factorial Designed Experiment for Creating Synthetic Images 
 

In order to determine if the main effects and interactions between the 

experimental factors contribute significantly to the performance of an anomaly detector, a 

factorial designed experiment will be used to create a family of synthetic images for 

which to test algorithms.  Instead of testing an algorithm on one or two images, the 

experimental hypothesis of this thesis is that testing an algorithm against many images 

will aid in determining the robustness of the algorithm being investigated.  A factorial 

designed experiment is essential to appropriately study and analyze each of these in-scene 

parameters and their interactions on algorithm performance.  Thus, a 24 full factorial 

experiment will be run to create the 16 synthetic hyperspectral images needed for this 

study.  The design points for the experiment are listed in Table 8 and a graphical 

depiction is shown in Figure 10. 
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Table 8.  24 Factorial Experiment for Creating Synthetic Images 

Image A: View Angle B: Time of Day C: Atmospheric 
Visibility

D: Scale of 
Targets

2 - - - -
9 + - - -
13 - + - -
12 + + - -
15 - - + -
11 + - + -
16 - + + -
8 + + + -
1 - - - +
5 + - - +
4 - + - +
6 + + - +
3 - - + +
10 + - + +
14 - + + +
7 + + + +  
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Figure 10.  Graphical Depiction of the 24 Factorial Experiment 

 
 
 
 

33 



Experimental Factors and Factor Levels for Algorithm Testing 
 

In the hyperspectral community, there are several types of image processing 

algorithms.  Anomaly detectors, target detectors, and unmixing algorithms are just a few.  

For the purpose of this thesis, however, the focus will be on comparing the two different 

anomaly detectors detailed in Chapter 2, the RX Method and the BACON Method.  Like 

many complex hyperspectral algorithms, the RX Method and the BACON Method are 

utilized by allowing the user to determine certain thresholds and weights for modifiable 

parameters in order to improve performance.  It is unclear when working with real data, 

though, whether an adjustment to a parameter is having the desired impact.  For example, 

after making a change to a parameter, two possible targets become more detectable while 

another target becomes less detectable.  The uncertainty lies in determining whether the 

algorithm has improved or not.  This leads to the main reason for implementing the use of 

synthetic imagery in this thesis study.  With the material in every pixel being known with 

100% certainty, all errors in detection will be able to be determined.  In order to test the 

RX and BACON methods, additional factorial experiments will be developed to 

investigate how different levels of parameters for each algorithm affect their 

performances on the synthetic images. 

Factorial Design, Factors, and Factor Levels for the RX Method 
 
 The RX Method contains several parameters that can be set by the analyst.  This 

study will focus on how the size of the processing window and the number of retained 

principal components influence the performance of the RX anomaly detector.  To 

examine this, a 22 factorial experiment is designed in which each of the two factors is 
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tested at two levels.  The two factor levels for each of the experimental factors is shown 

in Table 9.  Figure 11 depicts a graphical representation of the 22 factorial design. 

 
 

Table 9.  The 22 Factorial Design for the RX Method 

Factor Level PCs Retained Window Size 
Low (-1) 4 17 
High (1) 10 25 
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Figure 11.  Graphical Representation of the 22 Factorial Design for the RX Method 

 
 
 

The size of the processing window is an important factor in the RX algorithm.  

There is no rule stating that one window size works best because every image is different.  

A large processing window can contain too many anomalous pixels and may not 

correctly identify the “pixel of interest” as an outlier if, in fact, it is one.  A small 

processing window, as stated in Chapter 2, does not perform well for multiple-pixel 

targets.  Thus, analyzing an image using several window sizes will aid in the 
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investigation of how different levels of the processing window size affect the RX 

algorithm performance. 

The RX Method also uses Principal Component Analysis to compress the image 

data into a few major principal components specified by the eigenvectors of the 

processing window covariance matrix.  It is up to the analyst to decide how many 

principal components to use.  Again, there is no rule stating how many principal 

components should be retained.  As a result, like with the processing window size, we 

will experiment by retaining the top 4 and 10 principal components. 

Factorial Design, Factors, and Factor Levels for the BACON Method 
 

This study will focus on how different pre-processing data techniques, namely 

Band Aggregation and Clustering, can influence the performance of the BACON 

anomaly detector.  A 22 factorial experiment will aid in this study.  Principal Component 

Analysis, as stated earlier, will be used to compress the image data into a few major 

principal components.  For this thesis, the top 10 principal components will be used to 

reduce the dimensionality of the image data prior to running BACON.   

Band aggregation is a data reduction technique that averages every n bands to 

trim down the number of hyperspectral channels that defines an image.  The DIRSIG 

synthetic images used in this thesis contain 224 hyperspectral channels.  When 

atmospheric absorption bands have been removed, the image data still contains 163 

channels.  By aggregating every 10 bands, the dimension of the image can be greatly 

reduced.  Figure 12 illustrates band aggregation on a sample pixel spectrum.  The two 
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levels for this experimental factor are “Do Not Aggregate” and “Aggregate.”  When band 

aggregation is used, every 10 band increment will be averaged. 
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Figure 12.  An Example of Band Aggregation 

 
 
 

  Prior to implementing BACON, MATLAB’s k-means function is utilized to 

partition the data set into k clusters.  The value of k, which is determined by the user, will 

be the experimental factor for clustering in our study of BACON.  The number of clusters 

detected in the scene can affect the performance of BACON.  In the DIRSIG Western 

Rainbow scene, there can be 3 to 4 main clusters of pixels depending on whether trees 

and bushes can be differentiated from a grass field.  The other two clusters are a road and 

a dirt-grass area.  Thus, the number of clusters kmeans detects will be varied from 3 to 4 
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clusters.  Figure 13 shows the graphical representation of the 22 factorial design used to 

study the BACON Method. 
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Figure 13.  Representation of the 22 Factorial Design for the BACON Method 

 
 

Analysis Plan for the Collected Data 
 
 At this point we will have created a family of synthetic hyperspectral images as 

proposed by the initial factorial designed experiment.  Also, we will have processed these 

images through both the RX and BACON anomaly detectors based on two more factorial 

designed experiment using two algorithm-specific parameters as factors.  The metric we 

are interested in is the true positive fraction of the algorithm when the false positive 

fraction is fixed at 0.01.  This metric is a measure of the performance of each algorithm 

based on the levels of the in-scene parameters and algorithm-specific parameters.  A 

statistical analysis is now required in order to examine the accuracy and effectiveness of 

the hyperspectral anomaly detection algorithms under different values of sensor view 

angle, time of day, atmospheric visibility, and the size of the targets in the scene. 
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 One of the principal assumptions made in this thesis concerns the statistical 

analysis of the data using the ANOVA technique.  As seen in Chapter 2, the application 

of ANOVA to the results from a factorial designed experiment allows the user to 

statistically test the significance of all main factors and their interactions.  However, 

closer inspection of Table 3 reveals that it is necessary for at least two replications 

( ) of the experiment be performed in order to properly calculate an error sum of 

squares, SS

2n ≥

E.  In this thesis, though, only one run of the experiment is conducted since 

there will not be any variability in the response.  It does not make sense to perform 

replicates of any portion of this experiment since the results will not change from run to 

run given that the factor levels remain the same.  This implies that there are zero degrees 

of freedom dedicated to experimental error, SSE.  However, in his text, Montgomery 

appeals to the sparsity of effects principle.  That is to say, most systems are dominated by 

some of the main effects and low-order interactions.  The higher order interactions can be 

deemed negligible.  Thus, a principal assumption made in this thesis is that only main 

effects and two-factor interactions are significant.  This allows all three-factor 

interactions and higher to be pooled together as the experimental error. 

 Since the core focus of this thesis is to determine if the main effects and 

interactions among the image and algorithm experimental factors contribute significantly 

to the performance of an anomaly detector, we will first study the algorithms separately.  

Therefore, the 24 factorial design used to create the synthetic images will be combined 

with the 22 factorial design applied to test the RX Method on each synthetic image to 

yield an overall 26 factorial design.  Figure 14 shows the graphical representation of the 

26 factorial design that will be used to analyze the RX Method.  For each image, the RX 
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Method will be performed with the 4 Principal Component/Window Size permutations to 

obtain the true positive fractions of the algorithm.  Thus, 26 = 64 responses will be 

collected.  Similarly, the 26 factorial design will be used to test the effects on the BACON 

Method.  The analysis of variance (ANOVA) procedure will be used to analyze the 

significance of the image and algorithm factors as it relates to the true positive fraction of 

each detector. 
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Figure 14.  The 26 Factorial Design to Analyze the RX Method 

 
 
 

The Overall Nested Design 
 
 At this time we will have determined which main effects and interactions among 

the image and algorithm experimental factors contribute significantly to the anomaly 

detection performance of each algorithm.  However, the secondary focus of this thesis is 
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to determine whether or not the type of algorithm used is significant in finding anomalies 

in an image.  A head-to-head comparison between the two algorithms is not possible by 

putting the two experimental designs from the previous sections side by side.  This is a 

result of the fact that the algorithm experimental factors and levels are not the same from 

one algorithm to the next.  Therefore, we are not comparing apples to apples.  However, 

by utilizing a nested factorial design, we will be able to determine if the algorithm used is 

a significant factor.  An “apples-to-apples” evaluation will then be made between the two 

algorithms. 

A nested factorial design is used when the levels of one factor are similar, but not 

identical, for different levels of another factor.  In this thesis, the levels of Algorithm 

Parameter 1 are not the same for the RX Method or the BACON Method.  The same can 

be said for Parameter 2.  Therefore, Parameter 1 and Parameter 2 are nested in Algorithm 

Type.  Table 10 outlines the 7 factors and factor levels of the nested design.  Table 11 

displays the equations used to derive the sums of squares and degrees of freedom for the 

nested factorial design with 7 factors – two of which are nested within another factor. 

 
 

Table 10.  Factors and Factor Levels for the Nested Factorial Design 

Factor Label Factor Name Factor Levels 

A Sensor View Angle 0o 40o

B Time of Day 1200 1800 

C Atmospheric Visibility 5 km 23 km 

D Target Scale ½ 1 

X Algorithm Type RX BACON 

E(X) Parameter 1 nested in Algorithm Type Low High 

F(X) Parameter 2 nested in Algorithm Type Low High 
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Table 11.  Partial ANOVA Table for the Nested Factorial Design 
Source of Variation Sums of Squares Degrees of Freedom 
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Total ( )
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 In the partial ANOVA table, a lower case letter corresponds to the number of 

levels for the factor of the associated upper case letter.  Therefore, since Factors A, B, C, 

D, X, E, and F all have 2 levels each, the values of a, b, c, d, x, e, and f are 2.  Also, since 

only one replication can be run of the design, the value of g is 1.  This will result in 127 

total degrees of freedom.  One degree of freedom is dedicated for each of the main effects 

and two-factor interactions among A, B, C, D, and X.  It also produces 2 degrees of 

freedom for each of the nested factors E(X), F(X), and EF(X).  Finally, since all three-

factor interactions and higher will be considered insignificant, there are 106 degrees of 

freedom devoted to model error. 

 In order to complete the ANOVA table, the expected mean squares must be 

calculated to determine the appropriate F statistic for testing the effects of all factors.  

Since factors A, B, C, D, and X are fixed effects, it is assumed that , 
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=∑∑ .  That is, the treatment effects for factor A, for 

example, sum to zero.  Also, since the nested factors E and F are fixed effects, 
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=∑∑  for m = 1, 2,…, x.  Thus, since all 

factors are fixed effects, F0 can be determined by dividing each of the expected mean 
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squares by the expected mean square for experimental error (MSE).  If F0 > Fα, ndf, ddf, 

where α is the specified degree of significance, ndf is the number of numerator degrees of 

freedom and ddf is the number of denominator degrees of freedom, then the 

corresponding experimental factor is considered to be significant in the design.  Table 12 

displays the expected mean squares and F-statistics for each main effect and two-factor 

interaction. 

Table 12.  Expected Mean Squares and F-statistics for the Nested Factorial Design 
Source Expected Mean Squares F0 Source Expected Mean Squares F0
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IV.  Results and Analysis 
 
 

Overview and Assumptions 

 Prior to a full examination and discussion of the results, it is first important to 

outline how the results will be presented and discuss some of the assumptions used in the 

statistical analysis.  Chapter 4 is divided into four main sections: a) the creation of the 

synthetic hyperspectral images, b) the results of the RX Method, c) the results of the 

BACON Method, and d) a head-to-head comparison of the RX and BACON Methods.  

As stated in Chapter 2, the use of the analysis of variance (ANOVA) procedure allows us 

to analyze the significance of each main effect and joint interaction on the true positive 

fraction of each algorithm.  To assist in the calculations of the ANOVA and to provide 

model diagnostic plots, the Minitab statistical software package was used.  The level of 

significance for each test in this chapter is α = 0.05. 

As stated earlier in regards to the statistical analysis of the experimental designs, 

only a single replication of the design is run since the results will not change from run-to-

run given that the factor levels remain the same. Thus, in order to estimate experimental 

error, a principal assumption in this thesis is that only main effects and two-factor 

interactions are significant and higher order interaction terms can be pooled into 

experimental error. 

OC curves were also used to present the overall detection performance of each 

algorithm.  To build the OC curves, the truth maps were used to locate every man-made 

anomalous pixel in the image.  These are the target pixels.  Depending on the algorithm 
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used, the appropriate distance measure was then found for each corresponding target 

pixel.  The distances were then sorted in descending order and were, one by one, defined 

as the threshold.  Given each threshold, the true positive fractions and false positive 

fractions were recorded to construct the OC curves. 

Binary image maps were also used in the comparison of algorithms and algorithm 

parameter settings among synthetic images.  The binary maps display white pixels where 

the detectors declared an anomaly.  The binary maps in this thesis display the detector 

results for a fixed false positive rate of 0.01.  Appendix E reports a comparison of the RX 

and BACON methods using OC curves and binary maps for every image. 

Creating the Synthetic Hyperspectral Images 

The DIRSIG image used as the base model for this thesis is the Western Rainbow 

scene.  It is relatively homogeneous in the sense that the majority of the image is either 

normal vegetation or a mixture of grass and dirt.  There are, however, several trees and 

bushes, as well as roughly 30 military targets (tanks, missile carriers, and trucks), 

scattered throughout the image.  A dirt road also runs along the right-hand side of the 

scene.  The image, when viewed from directly overhead, is 250 by 250 pixels in size with 

a ground sample distance of approximately 2 meters.  A framing array sensor with an 

AVIRIS spectral range of 0.4 to 2.5 μm was utilized at an altitude of 15,000 feet.  The 16 

synthetic hyperspectral images used in this thesis study were created using the 24 factorial 

design shown in Table 8.  A summary of the experimental factors and factor levels for the 

image creation is listed in entirety for reference in Table 13. 

 
 

47 



Table 13.  Summary of Factors and Factor Levels for Synthetic Image Creation 

 Sensor View 
Angle Time of Day Atmospheric 

Visibility 
Scale of 
Targets 

Low (-1) 0o 1200 5 km 1/2 

High (1) 40o 1800 23 km 1 

 
 
 

Figure 15 displays a sample of the synthetic images generated by DIRSIG subject 

to the factor levels given in Table 8.  The figure is shown only as a visual comparison 

between Image 3 and the other images since there is only a one factor difference between 

Image 3 and each of the others.  Image 3 is viewed from directly overhead (0o) at 1200 

with 23 km of atmospheric visibility.  Image 10, by comparison, is viewed at a 40o angle.  

The lone variation between Image 1 and Image 3 is that there is 5 km of atmospheric 

visibility in Image 1.  Image 14 varies from Image 3 only in the time of day.  Image 14 

was collected at 1800.  In Image 14, as well as all images created with the time of day 

equal to 1800, the sun is setting to the left hand side of the image resulting in longer 

shadows to the right hand side of trees, hills, and military targets.  The targets in all four 

images are at full scale. 
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Image 3 

 

 
Image 10 
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Image 14 

 

Figure 15.  Comparison of a Few Synthetic Images 
 
 
 
 Truth images were also generated for each synthetic image.  The truth images 

show exactly where the targets of interest are in the scene.  Even though synthetic 

imagery provides a 100% per-pixel ground truth, 2 layers of “buffer” pixels were built 

around the true target points to account for spectral mixing between the edges of the 
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targets and the background.  These buffer pixels were not taken into account for the 

determination of the OC curve.  Figure 16(a) displays the actual truth image from Image 

3 where white pixels represent target locations while Figure 16(b) shows the truth image 

with buffer pixels where gray pixels represent targets and the white pixels are the buffer 

pixels. 

 
 

 
(a) 

 
(b) 

Figure 16.  Truth Image versus Truth Image with Buffer Pixels 

 
 

Prior to processing the images through the anomaly detectors, the maximum 

values of the data in the synthetic image cube were found to be on the order of 10-5.  

Since working with miniscule numbers like this may result in poor algorithm results, the 

images were each multiplied by 109 in order to scale the data to useful values.  Normal 

hyperspectral data falls in the range of 0 and 12000. 

Additionally, before processing any of the synthetic images, it was important to 

delete the atmospheric absorption bands from the data.  For these images, the following 
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hyperspectral channels were considered the “good bands:” 4-58, 63-79, 83-106, 120-151, 

and 184-218.  From here the red, green, and blue color bands that were used to show the 

colored images in this thesis were computed.  The red color band was determined by 

averaging bands 22 through 35.  The green color band was determined by averaging 

bands 9 through 16.  The red color band was determined by averaging bands 4 through 8. 

Once all synthetic images and truth images were created, they were processed 

through the RX and BACON hyperspectral anomaly detectors using the factorial 

designed experiments described in Chapter 3.  Significant main effects and interactions 

between the experimental factors were studied with the help of ANOVA and optimal 

algorithm parameter settings were determined.  The following sections detail the results 

of the two designed experiments and a head-to-head comparison is made between the RX 

and BACON Methods. 

Results from the RX Method 

 The RX Method utilized in this thesis is outlined in Chapter 2.  The coded 

algorithm was borrowed from Capt Yuri Taitano’s master’s thesis entitled “Hyperspectral 

Imagery Target Detection Using the Iterative RX Detector.”  However, instead of 

implementing an iterative approach to finding anomalies in hyperspectral data as Capt 

Taitano studied, this thesis applied a single iteration of the RX algorithm.  The RX 

Method applies a user-defined processing window to each of the pixels in the image.  

This results in a border around the image where several pixels cannot be processed.  

Figure 17 displays the “untestable” border pixels for each window size of the design in 

black.  These images can be compared to the “borderless” Image 3 in Figure 15. 
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Window Size = 17 pixels 

 
Window Size = 25 pixels 

* Band 200 is shown. 

Figure 17.  "Untestable" Pixels for RX Processing Window Sizes 
 
 
 

 All 16 synthetic images were processed by the four settings of the RX algorithm 

stated in Table 9.  The four settings are a) 4 principal components retained with a 

processing window size of 17 pixels, b) 4 PCs retained with a window size of 25, c) 10 

PCs retained with a window size of 17, and d) 10 PCs retained with a window size of 25.  

Given that there are 4 experimental image factors and 2 algorithm factors, each with 2 

levels, a 26 factorial design was used to analyze the response of the RX Method.  The 

response of interest was the true positive fraction (TPF) of the detector given that the 

false positive fraction (FPF) is fixed at 0.01.  A summary of the 64 responses for the RX 

Method is listed in Appendix A. 

 Once all images had been processed by the four experimental settings of the RX 

Method and all responses were collected, the Minitab statistical software was used to 

calculate the ANOVA table and produce model diagnostic plots.  Prior to relying on the 
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results from the ANOVA table, it is important to first check for model adequacy.  That is, 

the assumption of normally and independently distributed error terms with constant 

variance must be investigated.  These assumptions were easily checked and confirmed by 

inspecting the normal probability plot of the residuals and the plot of the residuals versus 

the fitted values.  These plots are shown in Appendix C. 

It can be seen from the normal probability plot that the errors are normally 

distributed since the residuals fall on the straight line, for the most part.  There are no 

gross deviations from normality.  Also, the plot of the residuals versus the fitted values 

displays a structureless “shotgun” pattern which implies that there is constant variance 

among the observations.  Given that the original assumptions hold, we can examine the 

ANOVA table in Table 14 for significance among the main effects and two-factor 

interactions of the 6 experimental factors: 4 image-specific factors and 2 algorithm-

specific factors.  Figure 18 displays the Half Normal Plot for the RX Method. 

Table 14.  ANOVA Table for RX Method 

Source of Variation Sum of 
Squares

Degrees of 
Freedom

Mean 
Square

F 0 p-value

Model 0.3818 15 0.0255 70.1905 < 0.0001
A (Sensor View Angle) 0.0309 1 0.0309 85.3473 < 0.0001

B (Time of Day) 0.0041 1 0.0041 11.2071 0.0016
C (Atmospheric Visibility) 0.0033 1 0.0033 9.0620 0.0042

D (Target Scale) 0.0087 1 0.0087 23.8891 < 0.0001
E (# of PCs Retained) 0.0146 1 0.0146 40.3410 < 0.0001

F (Window Size) 0.2543 1 0.2543 701.2443 < 0.0001
AB 0.0060 1 0.0060 16.5202 0.0002
AE 0.0068 1 0.0068 18.8146 < 0.0001
BD 0.0075 1 0.0075 20.6094 < 0.0001
BE 0.0092 1 0.0092 25.4275 < 0.0001
CE 0.0024 1 0.0024 6.6075 0.0133
DE 0.0078 1 0.0078 21.5252 < 0.0001
DF 0.0208 1 0.0208 57.4802 < 0.0001
EF 0.0039 1 0.0039 10.7375 0.0020

Residual 0.0174 48 0.0004
Total 0.3992 63  
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Figure 18.  Half Normal Plot for RX Method 

 
 
 
By inspecting the ANOVA table for the RX Method in Table 14, all 6 main 

effects can be seen to be significant since their p-values are less than 0.05.  The ANOVA 

table also shows that factor F (Window Size) is the single most significant factor for the 

RX Method.  Factor F contributes 66.6% to the model.  In contrast, the next five highest 

contributors combined (A at 8.1%, DF at 5.5%, E at 3.8%, BE at 2.4%, and D at 2.3%) 

only account for 22.1% of the model.  The R2 value of this model is 0.9527 (R2
adj = 

0.9392, R2
pred = 0.9192).  This implies that the model explains 95% of the variability in 

the data.  The plots of the main effects are shown in Figure 19.  The processing window 

size definitely stands out as the most important factor.  As the window size increases 

from it low level to its high level, the detection performance of the RX Method increases. 
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Figure 19.  Main Effects Plots for RX Method 

 
 
 

Even though the factors of view angle, time of day, atmospheric visibility, and 

target size can be controlled using DIRSIG, in the real world they are considered to be 

noise factors since they are difficult to control and keep at a specified target.  The 

parameters of the RX method, on the other hand, can be controlled by setting the levels of 

the appropriate factors.  The control-by-noise interaction plots can be studied to 

determine robust settings of the algorithm parameters.  In other words, we can choose the 

algorithm settings that minimize the variability in the response transmitted from the in-

scene image factors.  The significant control-by-noise interaction plots are shown in 

Figure 20.  In all interaction plots involving factor E, it can be seen that, regardless of the 

number of principal components retained to reduce the data, the true positive rate of the 

RX detector remains fairly stable.  That is to say, the variability in the response is 

minimal for either setting of factor E.  It can also be observed from the DF (Target Size ×  

Window Size) interaction plot that the variability in the response is minimized for a 
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smaller processing window size even though better anomaly detection occurs with a 

larger processing window and larger targets.  Thus, in order to minimize the variance in 

the response when studying the RX method, it is recommended to use a processing 

window of 17 pixels while retaining either the top 4 or 10 principal components. 
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Figure 20.  Control-by-noise Interaction Plots for the RX Method 

 
 
 

Through the use of a factorial experimental design, all image and algorithm main 

effects were found to be significant in determining the performance of the RX Method.  

The data showed that the RX Method performed the best on 10 of the 16 synthetic images 

with the use of a 25 pixel processing window and by retaining the top 4 PCs.  Of the 
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remaining 6 images, a 25 pixel window and retaining 10 PCs resulted in the best RX 

detection performance.  Thus, for this family of synthetic images, a processing window of 

25 pixels creates the best anomaly detection performance for the RX Method. 

Results from the BACON Method 

The BACON algorithm used in this thesis is outlined in Chapter 2.  The algorithm 

is part of the auto_det function written by Maj Timothy Smetek as part of his dissertation.  

Auto_det is a multivariate outlier detector designed to detect anomalies in hyperspectral 

imagery.  It combines a k-means clustering algorithm with the BACON algorithm 

proposed by Billor, Hadi, and Velleman (2000). 
 The first step prior to running the BACON algorithm was to cluster the image 

data using a k-means clustering algorithm.  The k-means algorithm uses a two-phase 

iterative algorithm to minimize the sum of point-to-centroid distances summed over all k 

clusters.  The user determines the value of k.  The algorithm also contains a distance 

parameter in which k-means minimizes with respect to.  This parameter can be set to 

“Cosine,” “Correlation,” “Squared Euclidean,” “City Block,” and “Hamming.”  For 

reasons not completely examined in this thesis, the cosine and correlation distances 

caused a breakdown in the algorithm when it was run on some images.  However, there is 

belief that, since the breakdown occurred on images in which the overall illumination in 

the scene was diminished due to low atmospheric visibility or the time of day being set to 

1800, the magnitudes of the some of the data were so small that they were effectively 

zero.  Since the cosine distance measures the cosine of the angle between points and if all 

points were considered to be zero, then there would not be an angle to measure and the 
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data could not be divided into the required k clusters.  Therefore, the distance metric 

chosen for k-means was the squared Euclidean distance. 

 Once the data was clustered, the BACON algorithm was applied to determine 

outliers in each of the clusters.  Initial results showed that the alpha level for the χ2 test 

was set too high.  The original alpha was equal to 0.05 which implies that the cutoff value 

for the χ2 test was 1- 0.05/n (where n was the size of the cluster).  This, as shown in 

Figure 21(a), resulted in too many pixels being labeled as outliers.  Indeed, the algorithm 

found the man-made outliers in the image (i.e. tanks, missile carriers, and trucks), but it 

also found the natural anomalies in the scene.  Trees, bushes, vehicle tracks, the road, and 

boundaries between background materials, such as the dirt and grass, were considered 

outliers.  This is mostly due to the fact that DIRSIG’s spectral-spatial variability of 

backgrounds is not nearly as complex as the real world.  This fact must be remembered 

when drawing any conclusions throughout this thesis when comparing the performance 

of the algorithms.  Through some testing, it was found that the alpha level for the χ2 test 

should be set a little bit lower in an attempt to suppress the natural anomalies, but still 

locate the man-made outliers in the image.  An alpha value equal to 10-12 was determined 

to provide a reasonable χ2 cutoff point of 1-10-12/n for this family of synthetic images.  

Improved RX results can be viewed in Figure 21(b). 
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(a) 

 

 
(b) 

Figure 21.  Initial (a) and Improved (b) BACON Results for Image 1 
 
 
 

Again, the 16 synthetic images were processed by the settings of the BACON 

algorithm shown in Figure 13.  Since there are 4 experimental image factors and 2 

algorithm factors, each with 2 levels, a 26 factorial design was used to analyze the 

response of the BACON Method.  The response of interest was still the true positive 

fraction (TPF) of the detector given that the false positive fraction (FPF) is fixed at 0.01.  

A summary of the 64 responses is listed in Appendix B.  Once all images had been 

processed by the BACON Method, the Minitab statistical software was used to calculate 

the ANOVA table and produce model diagnostic plots.  As with the RX Method, a check 

for model adequacy was performed.  The assumptions of normally and independently 

distributed error terms with constant variance were confirmed by inspecting the normal 

probability plot of the residuals and the plot of the residuals versus the fitted values.  

These plots are shown in Appendix D.  Given that these assumptions hold, we can 

examine the ANOVA table in Table 15 for significance among the main effects and 
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interactions of the 6 experimental factors: 4 image-specific factors and 2 algorithm-

specific factors.  Figure 22 displays the Half Normal Plot for the BACON Method. 

 
 

Table 15.  ANOVA Table for BACON Method 

Source of Variation Sum of 
Squares

Degrees of 
Freedom

Mean 
Square

F 0 p-value

Model 1.5926 8 0.1991 8.3945 < 0.0001

A (Sensor View Angle) 0.3249 1 0.3249 13.6979 0.0005

B (Time of Day) 0.0256 1 0.0256 1.0791 0.3035

C (Atmospheric Visibility) 0.0136 1 0.0136 0.5739 0.4520

F (# of Clusters) 0.5242 1 0.5242 22.1018 < 0.0001

AC 0.1289 1 0.1289 5.4349 0.0234

AF 0.2441 1 0.2441 10.2925 0.0022

BF 0.1764 1 0.1764 7.4366 0.0086

CF 0.1551 1 0.1551 6.5392 0.0133

Error 1.3043 55 0.0237

Total 2.8970 63  
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Figure 22.  Half Normal Plot for BACON Method 
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The ANOVA table reveals the significant main effects and two-factor interactions 

for the BACON Method.  Upon inspection, only 2 of the 6 main effects can be seen to be 

significant since their p-values are less than 0.05.  The viewing angle (Factor A) of the 

hyperspectral sensor is the only image related factor that contributes significantly to 

BACON’s detection performance.  Likewise, the number of clusters (Factor F) in the 

scene is the only significant algorithm parameter.  In fact, factors A, F, and AF contribute 

68.6% to the model.  The plots of the main effects are shown in Figure 23.   It is shown 

that as both the sensor’s view angle and the number of image clusters increase from their 

low levels to their high levels, BACON’s detection performance decreases.  The plots 

also show that as Factor E (Band Aggregation) varies from its low level to its high level, 

the average response does not change.  Therefore, it can be concluded that algorithm 

performance is not diminished by averaging every 10 bands to reduce the dimensionality 

of the data.  The R2 value of this model is 0.5498 (R2
adj = 0.4843, R2

pred = 0.3904).  This 

implies that the model explains 55% of the variability in the data. 
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Figure 23.  Main Effects Plots for BACON Method 
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Again, the control-by-noise interaction plots can be studied to determine the 

settings of BACON’s parameters that minimize the variability in the response transmitted 

from the in-scene image factors.  The significant interaction plots for the BACON 

method are shown in Figure 24.  For the AF (View Angle ×  # of Clusters) and BF (Time 

of Day  # of Clusters) control-by-noise interaction plots, it is illustrated that using 3 

clusters minimizes the variance in the response transmitted from the sensor’s view angle 

and time of day.  However, the CF (Atmospheric Visibility 

×

×  # of Clusters) interaction 

plot shows that 4 data clusters minimize the variability in the true positive rate of the 

BACON detector from the atmospheric visibility. 
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Figure 24.  Interaction Plots for the BACON Method 
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The application of a factorial experimental design has shown that only the 

viewing angle of the sensor and the number of data clusters in the scene were found to be 

significant in determining the performance of the BACON Method.  The data showed 

that BACON performed the best on 13 of the 16 synthetic images when 3 clusters are 

determined.  The three images that performed the best with 4 clusters happened to have 

combination of a 0o sensor view angle and time of day of 1200.  As far as algorithm 

parameter settings go, it was shown that further data reduction by the means of Band 

Aggregation prior to running the image through BACON did not significantly increase 

the algorithm’s performance.   

An RX versus BACON Comparison 

 The RX and BACON anomaly detectors were chosen to be studied in this thesis 

for several reasons.  The interest lies in the fact that classical Mahalanobis distance-based 

outlier detectors, like the RX Method, are limited.  These methods rely on non-robust 

covariance matrix estimates that are highly sensitive to outlying observations.  The 

BACON Method, on the other hand, is a multivariate outlier detector that uses robust 

estimates of the mean and covariance.  This section of Chapter 4 will attempt to show 

that specific robust multivariate outlier detectors are superior to the classical methods.  

Two tests were designed to compare the RX and BACON anomaly detectors.  Before 

comparing algorithms, though, a nested experimental design was used to determine if the 

anomaly detection algorithm used is statistically significant. 
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Nested Experimental Design 
 
It is important to realize that a head-to-head comparison between the two 

algorithms is not possible by putting the two experimental designs from the previous 

sections side by side.  This is a result of the fact that the algorithm experimental factors 

and levels were not the same from one algorithm to the next.  Therefore, we are not 

comparing apples to apples.  However, by utilizing a nested factorial design, we will be 

able to determine if the algorithm used is a significant factor.  An “apples-to-apples” 

comparison can then be made between algorithms. 

A nested factorial design is applied when the levels of one factor are similar, but 

not identical, for different levels of another factor.  In this thesis, the levels of Algorithm 

Parameter 1 are not the same for the RX Method or the BACON Method.  The same can 

be said for Parameter 2.  Therefore, Parameter 1 and Parameter 2 are nested in Algorithm 

Type.  Table 10 outlines the 7 factors and factor levels of the nested design.  Figure 25 

shows a diagram of the nested design. 
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Figure 25.  Schematic of Nested Factorial Design 
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To analyze the nested design, Minitab was used to construct the ANOVA table to 

determine the significant main effects and two-factor interactions.  Again, three-factor 

interactions and higher were deemed irrelevant and were pooled into the estimate for 

error.  The resulting ANOVA table is shown in Table 16.  For an alpha level of 0.05, 

factors A, X, AX, and F(X) were found to be the significant effects.  Indeed, it has been 

discovered that the algorithm used is important in detecting anomalies.  It also makes 

sense that the sensor’s view angle was established to be significant since it was the only 

image related factor to be significant for both the RX and BACON methods.   

The main effects plots and the AX interaction plot are shown in Figure 26 and 

Figure 27, respectively.  The key point to take from Figure 26 is that the average TPF is 

much larger for the BACON Method than it is for the RX Method.  Also, since the 

sensor’s view angle was found to be a significant factor, the main effects plot shows that 

slightly better anomaly detection occurs at a lower view angle.  The AX interaction plot 

illustrates that BACON performs better for a 0o view angle while RX performs somewhat 

better for a 40o view angle. 
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Table 16.  ANOVA Table for the Nested Experimental Design 

Source of 
Variation

Sum of 
Squares

Degrees of 
Freedom

Mean Square F 0 p-value

Model 3.1473 21 0.1499 8.6880 < 0.0001
A 0.0776 1 0.0776 4.5003 0.0362
B 0.0046 1 0.0046 0.2684 0.6055
C 0.0151 1 0.0151 0.8774 0.3511
D 0.0550 1 0.0550 3.1867 0.0771
X 1.6797 1 1.6797 97.3702 < 0.0001

AB 0.0363 1 0.0363 2.1030 0.1500
AC 0.0670 1 0.0670 3.8856 0.0513
AD 0.0153 1 0.0153 0.8886 0.3480
AX 0.2782 1 0.2782 16.1255 0.0001
BC 0.0043 1 0.0043 0.2521 0.6166
BD 0.0302 1 0.0302 1.7499 0.1887
BX 0.0250 1 0.0250 1.4508 0.2311
CD 0.0454 1 0.0454 2.6328 0.1076
CX 0.0018 1 0.0018 0.1020 0.7500
DX 0.0106 1 0.0106 0.6130 0.4354

E(X) 0.0185 2 0.0093 0.5365 0.5864
F(X) 0.7784 2 0.3892 22.5633 < 0.0001

EF(X) 0.0042 2 0.0021 0.1214 0.8858
Error 1.8285 106 0.0173
Total 4.9758 127  
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Figure 26.  Main Effects Plots for the Nested Experimental Design 
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Figure 27.  AX Interaction Plot for the Nested Design 

 
 
 

RX – BACON Comparison #1 
 
The first test involved plotting the maximum true positive fractions for each 

image-detector combination in Figure 28.  The x-axis displays the 16 synthetic images 

from the experimental design.  For each image, a lower case letter implies that the 

associated factor is set to its high level.  The absence of a letter implies that the factor is 

set at its low level.  It is clear to see from the plot that the BACON Method outperformed 

the RX Method for every image.  In fact, it outperformed RX by 29.6% on average.  A 

95% confidence interval for the mean difference between the true positive fractions of the 

BACON and RX Methods is (0.247, 0.344). 
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Figure 28.  Comparison of RX and BACON TPFs for All Images 

 
 
 

RX – BACON Comparison #2 
 
The second test involved creating a new synthetic image.  The models generated 

from the ANOVA and statistical testing were used to predict the best algorithm settings 

for an image created at the center of the image design space.  However, since there is not 

an actual center level in DIRSIG for the Atmospheric Visibility factor, the low level (5 

km) was arbitrarily used.  Therefore, DIRSIG was used to created a 17th synthetic image 

with a sensor view angle of 20o, the time of day set to 1500, 5 km of atmospheric 

visibility, and targets in the scene scaled by three-fourths their natural size. 
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The model for the RX Method predicted a TPF of 0.3965 by retaining 4 principal 

components and using a window size of 25 pixels.  A 95% prediction interval for RX’s 

TPF is (0.36, 0.44).  Meanwhile, the model for BACON predicted a TPF of 0.6962 for 3 

clusters no matter if band aggregation is performed or not.  A 95% prediction interval for 

BACON’s TPF is (0.38, 1.01).  Based on the predictions, BACON was expected to 

perform better than RX.  Actual results from running the RX and BACON detectors on 

Image 17 with the “best” algorithm settings given the image factors generated TPFs of 

0.4545 and 0.75, respectively.  The predictions for each algorithm are summarized in 

Table 17 and Table 18.  The OC Curves of the actual algorithm performance in Figure 29 

illustrate that BACON dominates RX in the FPF region of 0 to 0.05. 

 
 

Table 17.  RX Predictions for Image 17 

95% Prediction Interval # of PCs 
Retained Window Size Prediction 

Lower Bound Upper Bound 
4 17 0.2860 0.24 0.33 
4 25 0.3965 0.36 0.44 
10 17 0.2279 0.19 0.27 
10 25 0.3696 0.33 0.41 

 
 
 

Table 18.  BACON Predictions for Image 17 

95% Prediction Interval Aggregate 
Bands # of Clusters Prediction 

Lower Bound Upper Bound 
No 3 0.6962 0.38 1.01 
No 4 0.4168 0.099 0.73 
Yes 3 0.6962 0.38 1.01 
Yes 4 0.4168 0.099 0.73 
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Figure 29.  OC Curves for Image 17 

 
 
 

The binary maps in Figure 30 display white pixels where the detectors declared an 

anomaly at a false positive rate of 0.01.  The RX and BACON anomaly detectors perform 

well finding individual tanks, trucks, and missile carriers.  However, BACON exceeds 

RX’s performance in finding a large cluster of targets.  This can be examined by 

observing the areas in the truth map labeled A and B.  BACON does a very good job at 

detecting these anomalies while RX does not.  This leads back to the hypothesis that the 

RX method performs poorly for large targets relative to the processing window size.  The 

RX method also detects more of the natural scene anomalies, such as the trees, bushes, 

and vehicle tracks, as outliers in the data. 
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Figure 30.  RX and BACON Results for Image 17 

 
 
 

The previous two tests of this section were designed to compare the RX and 

BACON anomaly detectors head-to-head.  The performance of the BACON algorithm, 

although not perfect, was far better than the performance of the RX algorithm.  BACON 

functions very well in areas where RX performs poorly, such as in detecting large targets, 

or a cluster of targets.  The conclusion that can be made from these tests is that, in the 
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case of the RX and BACON methods, the performance of the robust multivariate outlier 

detector surpassed that of the classical non-robust method.  The main motivation for 

using robust multivariate outlier detectors lies in the fact that they are less sensitive to 

outlying observations in the data. 
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V.  Discussion 
 
 

Conclusions 

The primary goal of this thesis was to conduct an examination into how differing 

values of sensor view angle, time of day, atmospheric visibility, and the size of the target 

in the scene affect the performance of hyperspectral anomaly detection algorithms.  This 

was accomplished by utilizing the true positive fraction of the algorithms and employing 

a factorial experimental design.  The main advantage of using an experimental design 

approach was that it allowed a thorough examination of both the main factors and their 

joint interactions with respect to the algorithm’s performance.  Also, the use and analysis 

of a nested factorial design allowed us to make a head-to-head comparison between the 

BACON and RX anomaly detectors. 

In summary, DIRSIG was used to create a family of synthetic hyperspectral 

images in which to test the robustness of two anomaly detectors – the RX Method and the 

BACON Method.  The interest of comparing these two algorithms originates from the 

fact that classical Mahalanobis distance-based outlier detectors, like the RX Method, are 

limited.  These methods rely on non-robust covariance matrix estimates that are highly 

sensitive to outlying observations.  The BACON Method, on the other hand, is a 

multivariate outlier detector that uses robust estimates of the mean and covariance. 

Throughout the course of this thesis, it was discovered that BACON is a more 

robust hyperspectral anomaly detector than RX.  The sensor’s view angle, the time of 

day, the visibility in the atmosphere, and the size of the targets in the image were all 

73 



determined to be significant image factors in determining the true positive fraction of the 

RX Method.  On the other hand, the sensor’s view angle was the only image parameter 

that affected the performance of BACON.  That implies that BACON performed equally 

well over differing values of time of day, atmospheric visibility, and target size.  It was 

also illustrated that BACON’s true positive fraction was approximately 30% greater than 

RX’s. 

It has been shown that the use of a factorial designed experiment is a very 

effective tool for testing algorithm performance.  Furthermore, this experimental 

approach allows the investigator to study several different factors simultaneously.  The 

output from this type of experimental design permits an easy identification of trends and 

allows statistical hypothesis testing to establish significance of the parameters on the 

algorithm’s outcome. 

The results of this thesis are useful and important in two main areas.  First, as a 

proof of concept, we have demonstrated that the use of a factorial designed experiment is 

an excellent approach for simultaneously studying several in-scene factors and their 

impact on algorithm performance.  Second, this thesis is a step towards determining 

robustness and superiority among hyperspectral image detectors, whether they are 

anomaly detectors, target detectors, or classification algorithms. 

Contributions 

 This thesis has made several contributions to the field of hyperspectral remote 

sensing.  For one, it has provided an innovative, new technique for determining the 

robustness of hyperspectral algorithms.  The fusion of synthetic imagery and factorial 
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designed experiments allows the analyst to vary several parameters over many levels to 

resolve the main influences on algorithm performance.  This will permit the analyst to 

make modifications to further improve their target/anomaly detectors.  Second, it 

provides a means to compare the head-to-head performance of various algorithms.  A 

nested factorial designed experiment is the only channel that allows an “apples to apples” 

comparison of algorithms. 

 The synthetic images created for this thesis were also used as testing and 

validation images for four other master’s theses.  Capt Yuri Taitano, whose thesis was 

mentioned earlier with regards to the RX method, used several DIRSIG images to 

validate the Iterative RX method.  Capt Ryan Caulk and Capt Kevin Reyes each used the 

entire family of synthetic images to validate their new anomaly detection algorithms.  

Finally, Capt Jason Williams used a number of images to validate the robustness of 

several hyperspectral clustering algorithms. 

Recommendations 

 The factorial designed experiments in this thesis have certainly proved to be 

effective.  However, many of the algorithm performance trends witnessed in this study 

cannot be considered concrete conclusions without further testing.  More scene 

parameters, as well as more levels of all parameters, need to be tested.  More scenes and 

testing levels will result in the recognition of global trends with respect to algorithm 

performance.  A random effects factorial designed experiment will allow conclusions to 

be developed with respect to a population of possible parameter levels.  The testing that 
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was done in this thesis only allows us to draw conclusions about the levels that were 

tested. 

 Also, given that more images are tested at more parameter levels, a regression 

model could be developed for each hyperspectral algorithm tested.  This would allow a 

user to input the image parameters of interest into a regression equation and subsequently 

be delivered the expected metric result. 

 Using DIRSIG to create synthetic hyperspectral images helps to provide a 

baseline for spectral algorithm performance.  However, at the time, even though DIRSIG 

does a spectacular job at modeling the hyperspectral image chain, it is not quite as 

complex as the real world.  The lack of “real-world-like” spectral and spatial variability 

of DIRSIG images provides a significant obstacle when conducting rigorous algorithm 

testing. 
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Appendix A.  Responses for All Images Using the RX Method 
 
 

F: Window Size - - + +
E: PCs Retained - + - +

Image A: View Angle B: Time of Day C: Atmospheric 
Visibility

D: Scale of 
Targets

2 - - - - 0.2727 0.2323 0.3158 0.3053
9 + - - - 0.2517 0.2867 0.3929 0.3857
13 - + - - 0.2828 0.2172 0.3842 0.3053
12 + + - - 0.2937 0.2587 0.3786 0.3643
15 - - + - 0.2374 0.2273 0.2737 0.3105
11 + - + - 0.2378 0.2797 0.3571 0.4071
16 - + + - 0.2727 0.2172 0.3316 0.3053
8 + + + - 0.2587 0.2727 0.3429 0.3786
1 - - - + 0.2766 0.2008 0.3777 0.3863
5 + - - + 0.3414 0.2876 0.4613 0.4586
4 - + - + 0.2746 0.1352 0.4614 0.3541
6 + + - + 0.2661 0.2097 0.4282 0.3923
3 - - + + 0.2705 0.1988 0.3541 0.3863
10 + - + + 0.3199 0.2796 0.442 0.4503
14 - + + + 0.2541 0.1168 0.4206 0.3476
7 + + + + 0.2527 0.2097 0.4088 0.3591

Response: 

A: View Angle B: Time of Day C: Atmospheric 
Visibility

D: Scale of 
Targets

E: PCs 
Retained

F: Window 
Size

Low 0 degrees 1200 5 km visibility Half Scale Low 4 17

High 40 degrees 1800 23 km visibility Full Scale High 10 25

True Positive Fraction (TPF) when False 
Positive Fraction (FPF) is Fixed at 0.01.
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Appendix B.  Responses for All Images Using the BACON Method 
 
 

F: # of Clusters - - + +
E: Aggregate? - + - +

Image A: View Angle B: Time of Day C: Atmospheric 
Visibility

D: Scale of 
Targets

2 - - - - 0.6600 0.6550 0.6950 0.6750
9 + - - - 0.5850 0.5646 0.0408 0.0272
13 - + - - 0.7550 0.7550 0.4050 0.3800
12 + + - - 0.5714 0.5374 0.3197 0.2041
15 - - + - 0.2200 0.3750 0.4300 0.6550
11 + - + - 0.5510 0.5034 0.4626 0.4558
16 - + + - 0.7650 0.7450 0.7550 0.7350
8 + + + - 0.5714 0.4898 0.4014 0.4422
1 - - - + 0.7863 0.7661 0.7762 0.7621
5 + - - + 0.7236 0.6809 0.1482 0.2387
4 - + - + 0.8206 0.8165 0.5242 0.5302
6 + + - + 0.7337 0.7286 0.6080 0.3342
3 - - + + 0.2520 0.2843 0.6069 0.5081
10 + - + + 0.6884 0.6633 0.6307 0.6307
14 - + + + 0.8145 0.8004 0.4577 0.4556
7 + + + + 0.7111 0.6633 0.1206 0.0302

Response:

A: View Angle B: Time of Day C: Atmospheric 
Visibility

D: Scale of 
Targets

E: Band 
Aggregation

F: # of 
Clusters

Low 0 degrees 1200 5 km visibility Half Scale Low N 3

High 40 degrees 1800 23 km visibility Full Scale High Y 4

True Positive Fraction (TPF) when False 
Positive Fraction (FPF) is Fixed at 0.01.

 



Appendix C.  Model Diagnostic Plots for the RX Method 
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Appendix D.  Model Diagnostic Plots for the BACON Method 
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Appendix E.  OC Curves and Binary Maps for All Images 
 
Image 1 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Fraction

T
ru

e 
P

o
si

ti
ve

 F
ra

ct
io

n

RX vs. BACON for Image 1

 

 

RX

BACON

 

   
        Truth         Truth with Buffer Pixels 
 

   
         RX          BACON 

81 



Image 2 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Fraction

T
ru

e 
P

o
si

ti
ve

 F
ra

ct
io

n

RX and BACON for Image 2

 

 

RX

BACON

 
 

  
        Truth         Truth with Buffer Pixels 

 

  
         RX          BACON 

82 



Image 3 
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Image 4 
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Image 5 
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Image 6 
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Image 7 
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Image 8 
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Image 9 
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Image 10 
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Image 11 
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Image 12 
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Image 13 
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Image 14 
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Image 15 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Fraction

T
ru

e 
P

o
si

ti
ve

 F
ra

ct
io

n

RX vs. BACON for Image 15

 

 

RX

BACON

 
 

  
        Truth         Truth with Buffer Pixels 
 

  
         RX          BACON 

95 



Image 16 
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